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SECTION I. INTRODUCTION
The need for analyzing images of the earth taken from
high and low altitude aircraft is greatly increasing. The
purposes of the photographs are diverse and include:
. Navigational aid '
. Geographic map making 1

. Natural resources analysis

Mnilal . mits" s ..

. Weather prediction
Typically, a sequence of images 1is taken at different times
with different sensors. A basic problem in the analysis of these
images arises when it is desired to locate the same region in

a pair of dissimilar images of the same field of view. For

example, one may wish to locate a feature in both optical and

radar images of a scene in order to verify the accuracy of the
radar sensor or locate a feature in two optical images taken

under different weather conditions in order to study the changes.
This general problem is called map matching. Special cases of

this problem are image registration, change detection, stereometric
analysis, and multispectral image analysis.

Several methods including photographic techniques such as
image subtraction, optical techniques such as optical correlation
and digital computer techniques may be used to approach the
map matching problem. 1In this report only computer imaging
techniques will be considered. The versatility, reliability, and
economical feasibility of these techniques have produced the trend

of these methods for all application areas.




Several noteworthy approaches to the map matching pro-
blem have been proposed. These include the standard correlation
detector as well as highly efficient sequential techniques. These
methods and techniques together with an analysis of their perfor-
mance are described in the next section. The results of this
evaluation indicate that although some of the methods are partially
successful, further research is needed to accomplish the difficult
task of map matching in an efficient manner.

The type imagery encountered in map matching is varied and
may include optical, radar, radiometric or multispectral images.
A typical optical image is shown in Figure 1, and the correspond-
ing side looking radar image is shown in Figure 2. Note that
although each of these images shows significant scene detail, the
two sensors respond differently to the same feature. Most noti-
ceable is the intensity reversal of roads which appear white in
the optical and dark in the radar image. Upon careful study one
may also note a nonlinear geometric distortion between the two
images as well as scale changes. The appearance of bright "glint"
features in the radar image may also be noted. These features
are not visible in the optical images. Forest regions present
texture patterns in both optical and radar images with a shift
or reversal of intensity. Urban structures such as buildings
do not appear in great detail in the radar images but shadowing
effects are apparent in the radar images. The predominant simi-
lar features in both optical and radar images are shapes of cer-

tain features such as roads, forest boundaries and land-water

boundaries. Furthermore, these shapes remain recognizable
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even after some degree of degradations in resolution, intensity,
{ geometry or weather. Thus, it may be expected that structural

features will be important in map matching.
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Figure 2. ° Typical radar image considered in this sfudy,
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1.1 PROBLEM STATEMENT AND BACKGROUND OF PREVIOUS WORK

Let two images, S the search, and W the window, be as
shown in Figure 3. S is taken as an MxN array of digital

picture elements which assume one of K gray levels:

0 < S(mn) < K-1
1 <m<M
N.

[

na
=]

A

W is taken as a JxK array of digital picture elements

(with J < M and K < N) having one of Q gray levels:

o
HA

1

A

j<J A

1 <k <K.

When W is superimposed on S, the position of the upper left hand
corner of W is used as a reference point in identifying the
position of W in the search area coordinates. Therefore, when
W is located at (u,v), a picture element S(i,]j) in S is super-
imposed by a picture element W(i-u,j-v) in W.
5 In the physical world, S may represent a high~resolution
optical picture taken by an air-borne camera at high altitude.
This is as depicted in Figure 4. W may represent an image taken

by:

. The same sensor at a different time and look angle

. A difference sensor such as a side-looking radar at

a lower altitude
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The basic problem is that given an object terrain as

represented by W, we wish to determine by the use of a digital

computer whether the same object terrain appears in S.

A number of researches have been made to develop methods

of detecting local similarity and perform image matching. Some

of the more promising ones are:

Basic correlator
Statistical correlator
Sequential correlator

Sequential template matching

In the following sections, each of these methods is briefly

described and their relative performances are analyzed.

1.1.1 Basic Correlator

The basic correlation is a method used to form a correlation

measure between two picture functions and to determine the

location of the maximum correlation [1], [2]. In applying this

technique, the correlation measure R(u,v) at the reference

location (u,v) is defined as:
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a constant for any reference point u,v. Therefore Equation (1)

can be reduced to:

x

J
P Z)IS(i',j)W(i—u,j-V)

j=1 i=
3 T .- 2)

To determine the location of maximum correlation, R{u,v)
must be computed at each location u,v; 1 < U é M=-J+1), 1 pd \Y <
(N-K-1). This is because no decision can be made until the
correlation array R{u,v) is computed for all u,v. The perfor-
mances of this correlator can be described as follows:

(1) This method is relatively sensitive to image noise [3].
In the presence of image noise, the correlation function pro-
duces a relatively broad peak, thus making a selection of a
correlation peak difficult.

(2) A great amount of computation must be performed since
the window and search areas are usually large in an actual
photograph. With this technique no decision can be made until
the correlation array R(u,v) is computed for all u,v.

(3) WwWith the exception to the matching of every simple
pictures this method and the variations of this method [4], [5]

does not provide satisfactory performance in image matching.

1.1.2 Statistical Correlation

To overcome some of the difficulties mentioned in the

previous method, the statistical knowledge of the gpatial relation

of picture elements within each image were used in this statistical

T W5 gy
,
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correlation [6]. The statistical correlation measure Rs(u,v) is:

K J
I T F L F (i)
j=1i=1 3)

J 1 K J 5 °°°
2,. .32 2. .18

2 F (L) L ZENL))

i=1 & - [j=1 i=1 ¥ ]

R_(4,v) =

K
[ =
L..j..__l

where Fs(i,j) and Fw(i,j) are obtained by spatially convolving
the images S(i,j) and W(i,j) with spatial filter functions Ds(i,j)
and D_(i,]):

FglLj) = 8(i,j) ® D_(i,j)... (4)

Fw(i:j) = W(i, j) ® Dw(i,j) ces (5)

The spatial filter functions Ds(i,j) and Dw(i,j) are chosen
to maximize the correlation peak. The first step in the spatial

filter design is to decorrelate or whiten the images as follows:

A

-1
[Hs] S (6)

-1
[Hw] W (7)

B

S and W are column vector representations of the images S(i,j)
and W(i,j) obtained by column scanning the images. Hy and H, are

obtained by a factorization of the image covariance matrices

T
K s (8)

T
- (9)

|
[
o3

S S

Ky

I
sﬂ:
o s

Hs and Hw may be formulated in terms of the eigenvector and

eigenvalues of Ks and Kw as follows:

_ T _ % 3
K= EGAES = (E_A,) (E,A)) (10)

- T
_‘Ha}%

ahebal - bt R TN Sl T (%

B bt ki e s
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- T _ L L
Ky = ByhyBy = (EwAw) (EwAw)

T
HwHw . (11)

The correlation operation is performed on the whitened

vectors A and B to yield the statistical correlation measure.

T
A"B
R_(u,v) = (12)
S (aTa)* (8TB) % i
i
°r T-l T :
‘ I(K LS W (13)
= T - - Y 1
where '
®H™h = @ nl)7t (14)
A
If the image elements are assumed to be samples of Markov "
process then:
I—-l S 0 0 ..;_1
2. ..-1 -1
T-1 -1 2 -pT (1+p°)x -pZ 0 ...0 ]
(K) =K =1/(1-p)
-1 2 -1 -
0 ~pL (1+p )T -pZ 1... 0
$ | © c e 1] l
(15)

where

¢ = correlation between adjacent image elements
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-1
T = l,l(l-pz) (16)

1

Multiplying S by the (KT)- is equivalent to convolving the

image S(i,j) with the spatial filter function D(i,j).

[0 0 0 0 o]

3

F.f 0 pz -p(1+p2) p2 0

' D(Lj)=1| o —p(1+p2) (1+p2)2 -p(l+p2) 0 (17)
Y pz .,-p(1+p2) p2 0
0 0 0 0 0

and Equation (4) and (5) become

F (i,3) = S(i,3) @ D(i,3) ... (18)

F,i,3) = w(i,j) @ D(i,]) ... (19)

Performance of this correlator can be described as follows:

(1) Experiments performed on selected images indicated that }

the statistical method does provide better performance in terms of
providing a sharper peak at the location of image matching. 1In

order for the method to work well, prior knowledge of the picture

e g W o A

statistics is required. 1In an actual situation, this information is

&
|
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either not available or extensive computations are required so that
the correlator can be re-designed to tailor to the input data.

(2) It is anticipated that performance of this correlator
would be worse than that of the basic correlator if the statistics
of the input data differ from statistics used in the design of the
correlator.

(3) Because of extra convolution steps needed in this method,
the amount of computations needed by this method is even more than
that needed for the basic correlator. It remains to show that the

improvement in performance is worth the extra cost in computations.

1.1.3 Sequential Correlator

A common criticism of both the basic and statistical correlators
is the great amount of computations that must be performed. A
method of sequential correlation has been proposed [7] to reduce
the computation time. The basic form of this algorithm is simple.

An error function is defined as follows:

K J
8w, v) = T T |S(i,j) - W(i-u,j-v)] ..o (20)
j=1li=1

Instead of testing each of the elements in the window area,

elements of the area are selected at random. The error is accumu-

lated for as. each of the elements is compared. If the error exceeds
a predetermined threshold value before all the elements in the
window area are tested, the test is considered failed for the window
(u,v) and a new window is tested. The test procedure is depicted

in Figure 5. Curves A, B, and C depict the cumulative errors for

three different reference points. A and B accumulate errors rapidly
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and the tests terminate early. Curve C, however, accumulates

error more slowly. It is therefore, much more likely to be a
candidate as a matching point. Theoretical analyses and simulation
tests [7] indicated that a saving of computation time of at least
two orders of magnitude is possible. As with the other two
correlation methods mentioned earlier, only very simply structured

images were processed successfully by this new approach.

1.1.4 Sequential Template Matching

Extending the basic concept described in 1.2.3 a more compli-
cated sequential detecting method was proposed [8]. Local
similarity between a set of templates is matched to a given image.
Instead of matching each template of a set to an image at every
location, the templates are partitioned and a representative
template is defined for each of the partitions. Several levels
of partitions are defined. Elimination of mismatching locations
and termination of computation can take place at each level of
detection. Each level of testing is over a more restrictive
subset of template class than the previous level. Matching process
terminates when the accumulative template matching error exceeds
a threshold level. A location which has gone through successive
levels of matching without rejection is declared a likely candidate.
The performance of the sequential template matchinc method can be
described as follows:

1. Computation time is reduced due to the sequential method

of testing. In matching a real image, several hundreds of tem-

plates are needed, thus making the task of template partition difficult.

2. In a sequential testing, the ordering of the features is

important. Essential features (such as roads, rivers, etc.) must

i, i Al it PO S W I Pt fagt- iy, 5
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appear in both images in order to be considered as a match.

Methods of ordering features have not yet been developed.

g “ o
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1.2 OUTLINE OF REPORT

Two general approaches to map matching may be differentiated.
The first approach may be called a pictorial method and generally
involves a transformation of one image into a new image which
corresponds to the reference image. The second approach may be i
called a feature method of the emphasis is placed on the second
more robust method.

The pictorial method is developed in Section II. Transfor-
mations for matching mapec from different sensors and geometrics
are analyzed. Examples of perspective transform;tions are given
for optical, radiometric, and radar images. A sensor transfor-

mation based upon a statistical matching of corresponding image

points is also presented.

The use of edge features for map matching is described in
Section III. A new orthogonal decomposition in terms of point,
edge, line, and other basis vectors is presented. The advantage

of this representation in a lncal region. Map matching using

edge features also permits high speed logical similarity mea-
surement. The number of computations using this technique is
especially attractive for real time implementations. The use of
edge features for map matching is also demonstrated. In the ab-
sence of geometric and sensor distortions, the method works well
as indicated by the results of the experiments on matching an edge
image to a noise-corrupted version of the same .image. For optical
to radar matching, the performance is somewhat degraded but can

be improved using geometric and sensor intensity corrections as

well as data pre-processing-

i 2 R YD T NSRRI FRY AL . A A
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The theory of invariants is reviewed in Section. The

study of algebraic invariants is an important field of mathe-
matics and several results of this theory are summarized.

The concept of perceptual invariants has also been studied
for the visual system. Several invariant properties of the
visual system are presented and a simple device which produces
invariant measurements is described. The use of spatial mo-
ments for invariant measurements is described in Section 4.3.
A powerful theorem which relates moment invariants to alge-
braic invariants for continuous functions i: stated. New
results indicating a degree of variance in the invariant
measurements for discrete functions are presented. Examples
are given which also illustrate that the magnitude of the
variance can be controlled by careful vbrocessing.

Sequential techniques for searching for matching image
locations are presented in Section V. These methods promise
logarithmic efficiency over conventional correlation techni-.
gues. Zoom techniques are an important special case of the
sequential techniques and are considered in detail. The
effects of region size and resolution limitations are con-
sidered and demonstrated by several examples. Finally, recom-

mendations for future work in map matching are given in

Section VI.
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SECTION II. TRANSFORMATIONS FOR MAP MATCHING

2.1 GEOMETRIC TRANSFORMATIONS

e Tl T

In this section, methods of registration of the optical
and radar images are described. Figure 6 shows the general
geometry of the ootical and radar imaging systems together
with an object terrain of interest. 1In this figure, the
4 optical system is assumed pointing at the nadir and the radar
system is scanning the same object terrain at a slant range.

- Figure 7(a) depicts a rectangular array of digitized pixels

of the optical image. Figure 7(b) represents the rectili-

nearly digitized radar image plotted in the optical image

coordinates. Point (x,y) in the optical image and point (x,

v) in the radar image represent an image of the same object

point in the terrain of interest. The basic transformation
consists of deforming the radar image so that its features
corresvond as closely as possible to those in the optical
j( image.
Three methods of transformations were studied. These
are: -+ Perspvective Transformation
- Polynomial Estimate

* Interactive Nonlinear Transformation

2.1.1 Perspective Transformation

The general geometry of the optical imaging system is

shown in Figure 8. 1In this figure, the object (ground)

plane is assumed to be parallel to the image plane. The
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image plane

ground plane

optical axis
FIGURE 8. GEOMETRY OF OPTICAL IMAGING SYSTEM




T T WY S

e v, _:__ o WA ‘wa“i't\bz’stdw» ¢ ng S rRa i ) ot et . T il 5

24

optical axes is perpendicular to both planes and the en-
trance pupil of the camera is located at the origin of a
rectanqular coordinate system. From the lens law of geo-
metrical optics, the object distance u3' and image distance

X3 are related by:

1 1
3 X3

(1)

Hh—

where f is the optical system focal length. Since the
object distance is large compared to f, the image plane is
the fc~al plane and X3 = f. Any object point u' = (ul',

. ' i s . . _ .
u, s Uy ) is imaged into a woint x = (xl, Xy x3) in the

focal planes. The components of x can be computed by the

following equations:

(2)

(3)

b4 '=fo (4)

The geometrv of the radar imaging system is shown in
Figure 9. In this geometry the radar image plane is
assumed to be rotated 8, & and ¢ in the pitch, roll and yaw
axes. Therefore, the orientation of the radar system is

specified by the angles of rotation g, 8 and¢ . An object

with a ground coordinates u = (ul, n

27 u3) in the radar
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ground plane
FIGURE 9. GEOMETRY OF SIDE-LOOKING RADAR
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imaging system can be related to the o0ld coordinates u' =
(ui, ué, ué) in the optical imaging system by the matrix
equation

ul

= Mu (5) 4
where M is the product of three rotational transformation ‘

matrices:

[r o o | ,

M1 = 0 cosp sing (6) :

L’l -sin @ cos P i

—cos B 0 sin EB-1 :

342 = 0 1 0 _ (7) i
L--sin B 0 cos B_

Fcos 8 sin@ 0 ;

hd3 - -sin ® cos 6 O (8) |

0 0 1

Successive rotations in a pointing sequence can be
defined by M which is the product of thr three matrices
(6), (7), and (8). A list of these product matrices for

all six permutations of 1-, 2-, and 3- axis are:

m .= (sin 8cos B) (cos Bcos @+ sin 8sinPBsin ®) (sin 0 sin Bcos ¢~ cos Osing)

(-sin B) {cos B sin ¢) {cos Bcos @)

F(cos 8 cos f) (sin B sin ¢ - sin Bcos Bcos @) (sin B cos Bsing+ sin Bcosca'
m),,= (sin 8) (cos 8 cos ) (-cos O sin ¢) J

L.(-v:.os 0sinB) (sin 8sin Pcos @+cos Bsin¢) (cosPcosep-sinBsinP sin o)
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r.(cos Bcos 8 -sin Bsin §sin¢) (-sin B cosep) (sin Bcos B +cos B sin B sine)
(sin Bcos Bsin o+ cosBsin ) (cos Bcos ¢) (sinf sind -cosBcos B sing)

(-sin B cos ¢) (sin @) (cos Bcos o)

(cos B cos B) (-sin 9) (cos Bsin B)
(sinBcosBcosp+sinBsing) (cosBcosey) (sinBsinBcose-cosPsinw)

(sin@cosBsing-sinBcose) (cosBsing) (cosBcos®w+sinbsinPsineg)

—(cc‘>secos B+sin®sinBsing) (cosBsinBsing+sinfsin 8) (sinfcos C,"J).1

(sin @ cos ¢) {cos B cos ¢) (<sin ¢)(-sinp)

_(sin BcosBsing-cosBsinB) (cosBcosPBsin®w+sindsinB) (cos Bcosw)

i (cos 8 cos B) {-sin B8 cos B) (3in B) 1

(sinOcosep+cos BsinBsingy) (cosBcose-sinBsinBsiney) (-cosBsing)|

L(s’m 0sinep-coa0sinBcosqg) (sin@sinBcosy+cosOsinw) (cosPcose) |

The matrices (6), (7) and (8) and their products M (in
any order)are orthonormal, nonsingular, and have unity deter-
minates. These properties imply that the transform in (5)

can be inverted as:

Substituting (5) into (2), (3) and (4) yields:

-1 !
x,=Cy (g, uy, u)=f My, +my,u, +m,,u,

mgy ¥yt My, U, tmy g

-1
xz--Cz (ul, uz, u3)-f- m21u1+m22u2+m23u3

Mgy ¥yt My Uy tmy,u,
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X3 = C3 (ul, U,y u3) = f (12)

where mij are the elements of the product matrix M.

Let the radar imaging system be located at an altitude

h. Substituting h for uy in Equations (10, (11) and (12),

we have:

x =Cy  (u), u)=m,uy+m,u,+m b (13)

Mgy ¥yt My, Uyt mygh

. o _.
%, =C, (4, w))= m,, u)+m,,u,+m,.h

(14)
my) Uy Mg, U, +myh

-1 _
X, = C2 (ul, uz) = f (15)

In the case that the side looking radar is tilted at an

angle g8 and ¢ = 8 = 0, equations (13) and (14) become:

-u, cos B+hsinp

- (16)
1 U, sin B+ hcos B

-fuz

= (17)
2 ulsinB+hcosB
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Given the grid points (ul, uz) in the object plane
coordinates, Equations (13) - (17) can be used to compute the
corresponding points (xl, x2) in the radar imaging system
coordinates. 1In a quantized system, the computed coordi-
nate points do not generally fall on the grid voints in the
radar image. So it is necessary to adapt rules for picking
the appropriate element out of the radar image. The easiest
method is to simply pick out the value of the nearest neigh-
bor to the computed grid point. This method works well when
the geometric distortion is not severe and when the x and u
grids are about the same size. 1A second method is to take
the average (possibly weighted average) of the neighbor ele-
ments. A third and more complicated method is to use inter-
polating polynomials as a means of computing values of the

elements between points of known values.

2.1.2 Polynomial Estimate

Let the optical image intensity be given by f(ul, u2)
and the radar image intensity be given by f(xl, XZ)’ A
technique can be used to map the radar image into the
optical image using the following equations:
X, = ql(ul, u,) (18)
Xz = 92 (ull u) (19)

9, and g, can be approximated by a polynomial in uy and u,

of degree N as:
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N N-i x . u o
' x, = C, By w)=33, 285 1 2 (21)
! j=o j=

) where klij and k2ij are the constant polynomial coefficients.
For most practical cases, a second degree (N = 2) approxi-
mation is adequate. This has been verified by experi-
ments{9] (on data from side look radar iamges) in which it

R was found that the decrease in rms error as a function of :

increasing polynomial terms is not significant for N greater |

. than 2.

The coefficients of Equations (20) and (21) can be
computed by fitting the two dimensional functions to a set
of f£(u;, u,) and f(x;, x,) values. The linear - least -
squares estimate procedure can be used to express Cl(ul, u2)

! surfaces by polynomials whose squared distances from the

true surface is a minimum. To obtain the coefficients, pro-

minent features that appeared in both the optical and radar 3

images are selected. These prominent features can be:

-+« End points of a long edge

+ Intersection of two lines

*+ Corners of detected squares

» Distinguishable points on the boundary of
texture region

For a second degree (N = 2) approximation, at least six

pairs of conjugate points are needed. The values of these
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points can be arranged in the following manner:
;ir T1w v w2 o? uu 7 - -
e e T B T Ty 3 %100
2 .
<y . : 1‘:110
3 .
ol = | ; O (22)
. . ) 120°
) . X102
x 4 klll
-1“ 3 . J
Where R > 6.
A similar equation exists for Xy and k2ij' Both of these
may be written in matrix notation as:
X, = U Kl (23)
X, = 8] K2 (24)
Using the linear - least - squares estimate theory,
the best estimate for Kl and K2 are given by the pseudo
inverse solution:
_ T -1 T
K, = (U0~ U X (25)
_ T =1 T
K2 = (U"U) U X2 (26)

2.1.3 Interactive Nonlinear Transformation

In this section, a method of removing spatial distor-

tion in the radar image with respect to the optical image

is described. This method, which was first described by
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Ulstad [10] is currently being studied as a possible method
of removing geometric distortion by a nonlinear spatial
transformation.

The spatial registration system is shown in Figure 10.
The two sets of image data are sequentially available as
columns of matrices X and U each with L rows. The L-~element
column vectors of X and U are processed by the system in
order to produce a third L-element column vector R. The L
elements of the comumn of U map into L corresponding points
in X based on the following equation.

uli, k) = x[i +8(i,%), k +a (i,k)] (27)

The quantities R(i,k) and a (i,k) are real scalar cor-
rection factors are functions of the indices N and k.

As shown in Figure 11, use is made of N submatrices
defined in U. Submatrix Un consists of 2 p rows labeled

sn - p through sn + p where 1 < n < N, p is an integer and

_ L
S = LT (28)
Let the N index points (an bn) in Matrix X be such
that:
U(sn,k) = X(a_ , b)), (29)
The points (an, bn) in X correspond to the middle row

of the nth submatrix U at the kth column. The points will

be used as the corner points of a piecewise linear synthetic

scan line in the transformation. In determining (an, bn)

during the processing of the kth column, correlations of

et 3 i, s B, B . bl vl SN, e s R

3.
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FIGURE 10. SPATIAL REGISTRATION
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R(i,k) of matrix R and U(i,k) of matrix U are made for i,

in ranging from sn-p to sn+p. The results of these corre-
lations is then used to compute a new corner noint (an +
Aan, bn + Abn). The corner point with the updated value can
then be used to produce the (k+1)th column of the R matrix.

This orocess continues until an entire matrix R is produced.

‘ 2.1.4 Results
The polynomial method is preferred over the perspective
transformation. Perspective transformation requires tracking
and ephemeris data to determine the positions of the sensors
at the time of exposure. These data are often not avail-
able. 1In the polynomial method, data needed for the trans- ’

- - . k

formation are entirely contained in the images.
Figures 12, 13 and 14 show the results of geometric

distortion corrections byfhe method discussed in Section

‘( 2.1.2. Figure 12 shows the various possible degrees of
corrections. Figure 13 shows a radiometric and an optical
victure. Geometric transformation was performed on the
optical picture in order to match the radiometric picture.
Corrections were concentrated on matching the three straight
roads. A total of eight reference points from each of the
two original pictures was used for the transformation.

Figure 14 shows two pictures taken by two different sensors,

an optical camera and a radar, at different look angles.

The transformation is made on the optical image so that it

can be geometrically in registration with the radar image.




Micrad

Transformed Micrad Transformed Micrad

Fignre 12. Polynomial Geometric Corrections
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Figure 13, Ceomefrical Transformation
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For this transformation, a total of twelve reference points
from each of the two original images is used to form based
for a pseudo-inverse transformation. As shown in Figure 14

(d), a nearly perfect registration was obtained.

g

rmlue n s
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2.2 Sensor Transformation

Because of the differences in operating characteristics
of the two sensors, images of the same object taken by the
optical system and the radar system will have different in-
tensity profiles. The most prominent difference is that the
optical image is positive while the radar image is negative.
H In this section, methods of intensity transformation are
described. These methods consist of transforming the radar

image so that its intensity profile matches as closely as

possible to that of the optical image. The two methods
studied are:
+ Intensity Egqualization using Karhunen-Loeve Trans-
form

* Equalization using Intensity Averaging

2.2.1 Intensity Reversal

As the first step in the intensity transformation, the

negative radar image 1is transformed into a positive image.

This is done by replacing the amplitude of each picture

element eij by its complementing value éij‘ For an image
which has been digitized with n bits:

- = n_ _
eij 2 eij 1 (30)

where 2" is the number of quantization level. Figure 14 (a)

shows the original radar image. An intensity reversal is

performed on this image by applying Equation(30). The result
E is shown in Fiqgure 15(a). It can be seen that the contrast

!
i; of the image is low and intensity modification must be per- ]

formed so that its intensity profile matches as closely as

anahacal i, A ian i hon il 5, o o i 2 L e’
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possible to6 that of the optical image shown in Figure 15(b).
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{a) Radar Image (b) Optical Image
’ Intensity Reversed

{c) Intensity Transformation (d) Intensity Transformation
(Karhunen-Loeve Transform) (Averaging)

Figure 15. Intensity Transformation
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2.2.2 Intensity EBqualization Using Karhunen-Loeve Transform

A two-dimensional image intensity function f(xl, x2)

can be constructed as follows:
1 f(xl, x2) =n (31)
)
- where
g; Xy = Intensity level of the picture element in the
é radar image,
, 0 <x; 22" -1 |
X, = Intensity level of the picture element in the é
3 optical image,
:’ 0 sx, <2 -1
{ n = The numbers of picture elements which have inten-
g‘ sity level of Xy in the radar image and the inten-
E sity level of X, in the optical image.
% A covariance matrix D is then formed to indicate the
:

relative intensity correlation between the two images as

| follows:
k]
' T (32)
| £ = ELIx - My ) (x, - M) ]
' where
MXl = Expected values of X1
sz = Expected values of X

A Karhunen-Loeve transform can then he nerformed to

obtain a new set of coordinates ¢4 and<& as follows:

¢ = A (33)

e
R > WA PR F Al

e,
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where A = Diagonal matrix with the eigenvalues )‘i of T as the diagonal
x

elements

= Matrix whose columns are the ordered eigenvectors of &

®= [cpl. coz] for 1\, 2 x, (34)

The transformed coordinates ¢1 and ¢ , are shown in
Figure 16. Based on ¢1 and ¢2 intensity corrections can now

be made by scaling the intensity profile of the radar image

| such that the resulting coordinates ¢l and ¢2 are orthogonal

v and the angle between ¢1 and the fl - axis 1is approximately
45 degrees.

i Figure 17 shows a three-dimensional plot of the resul-

} ting intensity transformation. It can be seen from this

figure that both images have approximately the same numbers
of picture elements at each intensity level. Figure 15(c)
shows the resulting transformed radar image. In this

‘ figure, considerable details which are not visible in the
original radar image have been made visible by the inten-

< sity transformation.

2.2.3 1Intensity Equation Equalization by Intensity Averaging

~

The intensity transformation method described in Section
2.2.2 can be modified such that the average intensity of the
transformed radar image is made approximately equal to the
average intensity of the optical image. The resulting trans-
formation based on this method is shown in Figure 15(d). 1In
this method, a compromise is made to match the overall in-

tensity of the two images whereas image transformation using
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the method described in Section 2.2.2 products a better

match in tracking the variations of local intensity. Matching

the overall intensity is most important whenever a non-

normalized similarity measure is used.
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2.3 Fourier Transform

The most salient of the optical systems was developed
by Lendaris and Stanley for terrain classification. The
sensor or feature extractor measured aspects of the optical
Fourier transform in specified geometric patterns. The
initial system utilized coherent ontical techniques to ex-
tract measurements (features) of the Fraunhofer diffraction
pattern which were classified via an interactive nonstatis-
tical classification method. In the present application the
image f({x,y) is transformed optically into its Fourier snace
F(vx, vy) via the well-known property that coherent light
passed through an image f(x, y) and then through a thin con-
vex lens produces the diffraction pattern in the back focal
plane. The coordinates (u, v) of this transform plane are
directly related to spatial frequencies and of the input

image. This is shown in Eqs. (35) and (36).

R © <o -2 wf(ux + vy)
F(u, v) = Cff e A3 f(x, y)dxdy (35)
-0 -c0
= u Vv = 36
T Yy T (36)

The constant X is the wavelength of the incident light, f is
the focal length of the transform lens, and C is the ampli-
tude transmission factor. The sensor is composed of 32

angular wedges which sample the squared modulus of the dif-

fraction pattern (power spectrum I(u, v)) and produces

aEcamiibiad
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aporopriate signatures

I(u,v)=f‘(u,v) f’* (u,V)=I£‘(“:V)‘Z . (37)

where ° denotes a complex function and * denotes conjugate.

The annular ring sample signature is expressed in polar

coordinates as

m ptlp
*5 =r/‘ I{c6) pdpde (38)
p.
J
j=1,2,....32
where p = (u2 + vz)l/2 and 8 = tan -1 v/u. Each rj signa-

ture value represents the total power in the annular region

(pj, 0 + Ap). The wedge signature values may be similarly

described by

Pmax 9j+Ae‘ .
w, =/' / b 1(p,0)pdnan (39)
Pmin .%

j=1,....32

in which each wj represents the total power in an angular

frequency band from (ej, ei + AB).

The focal length f of the transform lens is adjusted so

that the outer ring of the detector images 8 %p/mm. The

annular ring signature provides a rotationally insensitive

———
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means of detecting one-~ or two-dimensional spatial perio-
dicity within apertured areas. In contrast, the wedge signa-
tures are insensitive to periodic structure but sensitive to
direction. both frequency signatures subsequently have
yielded valuable features for object detection.

To initially evaluate the effectiveness of Fourier
features for map matching, the following experiment was
performed. Four corresponding regions in an optical and
radar scene were selected as illustrated in Figure 18. The
Fourier transform of the corresponding regions were computed
using a coherent optical system. Comparative photographs of
the magnitudes of the Fourier transforms of the regions are
shown in Figures 19 to 22, Note that the most obvious pat-~
tern is that the optical image contains more high frequency
enerqgy corresponding to greater detail in the optical images.
Also, a correlation between line structures in the images
and transforms is visible in several of the patterns. To in-
vestigate the transforms with a more sensitive detector,
ring and wedge measurements were made using the RSTI detector.
Graphs of these results are shown in Figures 23 to 30. Note
that these measurements indicate a correlation in both ring
and wedge measurements. Thus, more quantitative studies

such as map matching with these measurements are required.




(a) Optical Image

(b) Radar Tmage

Figure 1. Corresponding scene selected for Epurier transforms measuren onf -




(a) Fourier transform of
optical image of the
rural field region

(b) Fourier transform of
radar image of rural
field region

Figure 19, Fourier transform of rural field region
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(a) Fourier transform of optical
image of road intersection
region

(b) Fourier transform of radar
image of road intersection
region

Figure 29, Fourier transform of road intersection region
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(a) Fourier transform of optical
image of curving road region

(b) Fourier transform of radar
image of curving road region

Figure 21. Fourier transform of curving road region
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(a) Fourier transform of optical
image of stadium region

(b} Fourier transform of radar
image of stadium region

Figure 22, Fourier transform of the stodium region
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SECTION III. EDGE EXTRACTION AND REGISTRATION

3.1 Introduction

An important technique used in automatic scene analysis
is image segmentation. This technique involves separating
the image into various regions corresvonding to individual
objects. Assuming that these regions have some homogeneous
characteristic, for example, luminance, color, texture, etc.,
one segmentation technique is to detect sharp transitions
called edges, which tend to outline the desired boundaries.
The opposite alternative is to "grow" regions by connecting
small adjacent areas of similar characteristics. Of interest
here is the detection of edges that separate regions of dif-
ferent constant luminances, and lines which can be regarded
as a degenerate pair of edges. This operation requires the
examination of several picture elements within contiguous or
overlappring sub-areas of the image, followed by a decision as
to whether an edge or the line segment is present or not
within each sub-area.

The segments can be characterized by variable such as
amplitude, orientation, position within the sub-area, etc.,
and possibly a measure of confidence.

Upon examination of the whole picture, the object boun-
daries are constructed by connecting the edge and line ele-
ments detected previously. This operation can be directed by
simple syntactic rules, for example connect neighbor edge

elements that line up approximately, and delete isolated

parallel elements.
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Some of the difficulties of edge detection are caused
by noise, but much more so by the fact that visually dis-
tinct edges sometimes cannot be discriminated within a small
image sub-area or, conversely that what appears to be an edge
within the sub-area could belong to a homogeneously textured
domain of the picture. Increasing the size of the sub-area
apoarently solves the problem, but is limited by computa-
tional costs and the complexity of large segment description.

It is generally recognized that boundary detection is
therefore best done by the combination of a relatively simple
edge and/or line segment detector, followed by algorithms
that thin and link the segments obtained into continuous
boundaries. Several fast numerical techniques for luminance
edge extraction have heen published, for example, Robert's
"gradient" [1], Kirsch's [2], Sobel's [3], Prewitt's [4],
Robinson's [5], and the so-called "smoothed gradient" [6]
operators. Comparison of the above algorithms reveals simi-
larities that suggest underlying general principles.

From these we develop a set of orthogonal functions
which are closely related to distinctive image features. The
properties of these functions suggest ways to minimize the
amount of computations as well as an improved decision crite-
rion. Considerable improvements are obtained in terms of
boundary "thickness"” and sensitivity to faint edges. The
edge detection methods are described in Section 3.2.

The simplicity of edge data with its low computer

memory requirement suggests several ultra-fast image registra-

tion methods through edge correlation. Theories of edge
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correlation have been investigated and several experiments
have been performed to test their applicability to real
images. Section 3.3 describes edge registration as a poten-
tial method of image matching. Experiments were performed
to register:

* Optical-to-optical images
i - Radar-to-radar images
* Radar-to-optical images

The results of these experiments are discussed in

Section 3.3.
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3.3. Fast Edge Detection

3.2.1 Definitions

The problem of boundary element detection can be for-
mulated as follows: given a set of n2 luminance samples from
an image sub—-area, determine whether the sub-area contains a
boundary element between two regions of different homogeneous
luminances (edge). It may alsc be of interest to determine
whether the area contains a line or a pair of degenerate
edges enclosing an object too thin to be resolved. To this
end, we define the following mdoels of "ideal boundary ele-
ments.

Consider an image sub-area A of size n x n sampling
intervals shown in Figure 3la. In the continuous image do-
main, we define an "ideal edge element" as a straight boun-
dary, passing through the center of A, and which separates
two regions of different, constant luminances bl and bz.
Adopting the convention bl > b2’ the direction ¢e of the edge
element is uniquely determined with respect to any arbitrary,
fixed direction as shown in Figure 31lb. The ideal edge ele-
ment is characterized by its "magnitude" = Ibl - b2l and
orientation , O, < 27,

Next we define an "ideal line element" (in the continu-
ous image domain) as a straight strip of width approximately
equal to one sampling interval, passing through the center of
A, and of different luminance bl than its surrounding b2 illu-
strated in Figure 31lc. The ideal line elements is charac-
terized by its "magnitude" = lbl - b2|, its orientation ¢y

0< ¢ <m and polarity sign (b1 - bz).




//,,—sampling interval

‘(////continuous image

image sub-area

arbitrary reference direction

3

FIGURE 31.
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Finally, an "ideal point" is defined as a point of
brighfness bl different than a constant brightness b2 of the
surround. The ideal point is characterized by its "magni-
tude" = lbl - bz[ and polarity sign(bl - bz) .

For the discrete case, we define the following notation.
consider the set of n2 luminance samples bij of the image sub-
area as an element of an n2 ~dimensional vector space B. The
elements of B can be represented by a matrix B or a column

vector b, for example (n=3)

b
by P12 b3 1
. bz
B=1byy byy bpyjsor b=} (1)
b3y bap; Dbay b,
| o

Finally we define an inner- (or dot) product (-,-) on B as

2

z 2 5
B'C = b.- . =
( ) 2155 ii%; °F (b, c) i‘?’lbici’ (2)
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3.2.2 Review of Previous Work

R DL

Previous fast edge detection algorithms [1-5] fall

V5 s TR

essentiallv into two categories:
a) Evaluate the maximum average gradient AG (or
_? "smoothed gradient") present in each image sub-area. The
| average is estimated in a direction perpendicular to the
i} {unknown) edge element orientation and the maximum is approxi-

mately obtained by

2

AG w~ [(B, W1)2+(B,W2)2] (3)

where B is the vector of luminance samples and Wl’ W2 are ]
weighting functions shown in Fiqure 32 a, b, c[1,3,6}. When
the average gradient exceeds an arbitrary threshold, the image

sub-area is considered to contain an edge element. Orienta-

'( tion is then obtained avproximately as

¢ = atan[(B, W)/(B, W,)]. (4)

In order to simplify computations, the sum of squares
of eq. 3 is sometimes replaced by a sum of absolute values.
It is vpointed out that the above measures are not isotropic, i
e.g. certain edge orientations are favored over other ones
[5]. A pair of isotropic weighting fuctions is shown in

Figure 324.

f| b) The second approach is to form inner products of the

luminance vector B with a set of discrete edge templates or
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FIGURE 32.




masks T, of different orientations as shown in Figures 33a, b,

c, d[2], [47, [5]), and retain the largest value

max { (B, Ti)}.

When this value exceeds an arbitrary threshold, the sub-area

B is considered to contain an edge element. The direction is

approximately equal (+7/4) to the orientation of the template
giving the largest inner product.
This second concevnt can be immediately extended to line

and point detection with the template vectors shown in

Figure 34a and b.
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(a) Prewitt (b) Kirsch (¢) Three-Level (d) Five-Level
Masks Masks Simple Masks Simple Masks
(Robinson)
111 |1 515 |5 1 [ 1 12 1
1(-2 |1 310 I3 0| 01]0 00 |oO
1 -1 -1 -3 {-3 }3 21 - A 2
i 111 {1 5 5 |3 1 110 2 0
11-2 | 510 |3 1| o[ 1 -1
1]1-1 |- -3 -3 }3 0 |-1 |1 0 b1 |-2
11 5 -3 }3 1 -1 1 [0 [-1
11-2 -1 5 0 3 1 -1 2 1o [-2 }
|
t i1 5 |-3 13 ] 0 |-1 1 10 11 i
1]-1 | -3 3 I3 0 [-1 1 0 11 [-2
q
” 1|2 1 3 1| o | 1 lo |
111 | 3 1 110 2 |1 |o
- -1 R -3 3 -1 (-1 1 F2 |4
3 1 (-2 |1 -3 {0 43 0 {00 0 [0 |O
E‘ 111 1 5 [5 |5 1 1 1 12 |1
a1 R 3 F3 3 T [-1 [0 2 F1T [0
- -11-2 1 -3 5 1 o | -1 |0 |1
l 111 -3 5 0o |1 |1 0 |1 |2
: EEENE 3 3 s -1 1 3 {0 [1 1
? -1 -2 -3 |0 |5 -1 1 -2 |0 2 :
» 101 D -3 k3 |5 -1 1 1 (o |0
I ERE -3 15 |5 HERE NIBE
i -1 2 N -3 |0 |5 21 o | -1 o N
: -1 1R -3 3 43 I T S I -2 41 o
FIGURE 33. "TEMPLATES" OR "MASKS" FOR EDGE DETECTION [4],[2],[5]
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3.2.3 Derivation of Orthogonal Feature Basis

We now seek an aporopriate basis for B. Because the
templates of Fig. 33c¢ and 34a revresent samples of ideal edge
and line elements positioned in eight equidistant orienta-
tions, we assume "edge" and "line" subspaces of B spanned by
these vectors. of all possible orthogonal bases for these
subspaces, we choose the one shown in Fig. 35 because of the
following proverties: a) the first pair of basis vectors Wl
and W, represents the isotrovic smoothed gradient weighting
function. This vair, taken together with the second pair
spans the above "edge" subspace. Db) The second pair of basis
vectors W, and W4 has a distinctive higher order aspect
(three zero crossings instead of one) and will be shown to
contribute little to the magnitude of the edge subspace com-
vonent. c¢) The "line" vectors were decomposed into pair of
vectors WS’ We with directional preference and a pair W, W8
without directional preference. Note that the point basis
vector of Fig. 34b is equal to the sum of the latter pair,
which, incidentally, span all possible discrete realizations
of the discrete Laplacian [71. Finally, the vector W9 was
added to complete the basis. Observe that linear combina-
tions of each pair of vectors produce similar distinctive

patterns, ﬁhich we call "average gradient," "ripole," "line,”
and "Laplacian" respectively.

Fig. 36 and 37 illustrate the above discussions. Aan
original image of size 256 x 256 pixels was projected onto

each one of the nine orthogonal basis vectors of Fig. 35.

P
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W8 (laplacian)

Wo (laplacian)

w 4 (ripple)

W3 {ripple)

Figure 37,




Since the projections are bipolar, a constant value was added

for display, and the images were scaled for better display.
The complementary nature of (edge, ripple) and (line, point)
spaces is clearly visible and can be attributed to the fact
that the former basis vectors are odd with respect to one
axis of symmetry whereas the latter basis vectors are even
(see Figures 33c and 34a).

In order to reduce computation, it would be desirable to
reduce the dimension of the feature subspaces. Fiqgure 38
shows the magnitudes of the projections onto "average gra-
dient,"” "ripple," "line," and "point" respectively. While
the last pair of projections appear similar (any line is com-
posed of points!), the "average gradient" and "ripple" pro-
jections are quite different. It is easy to see that the
"ripple" subspace adds little to the "edge" subspace and may
bhe ignored to save computation.

An improved edge picture can be obtained by a simple use
of the complementary property of projected components. If we
subtract the edge magnitude form the sum of line and point
magnitudes, the resultant picture will have diminishing values
of those "edge points” with impure edgeness, making real
edges sharp and obvious. Depending on the noise level of
the original image an alternative edge decision criterion
could be z relative edgeness thresholding in stead of absolute
one. In this way faint edges can be detected with the same
opportunities as those of strong edges. However, care must

be taken as deciding faint edges because they are more sub-

ject to noise.
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Magnitude in E-Subspace Magnitude in L-Subspace

Magnitude in P-Subspace Magnitude in R-Subspace

Fipure 38.
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Following this, the edge picture can even be improved
by running the convolution (Fig. 34b) on it. This "vpoint
operation" effectively extracts peak values of the source
array, making the edges even thinner and prominent. However,
this follow-up process will raise the noise level somewhat
and it has to be accompanied by noise cleaning. This is

similar to peak detection in [9].




s TR 20, s et e e D L2} o i a i

3.3 Edge Registration

3.3.1 Edge Correlation Methods

For the purpose of fast feature mapping the edge infor-
mation of both the search region and searching windows is ex-
tracted. Correlation or similarity algorithms are then run
on them. There are several advantages to edge feature regi-
stration instead of original scene magnitude registration.
Firstly, edges are more likely to be sensor independent
(optical vs. radar). Secondly, they are invariant to illumi-
nation change or even to a local illumination reversal.
Thirdly, the storage of edge map requires up to 88% less
storage, because of the low percentage of edge points among

a picture in general. If bit operation is available the 4

storage can even go down for several other orders. Finally,
search computations can be reduced to logical functions in- ]
stead of fixed point multiplications.

Let two images, A the search region and B the window be

defined as M x N and m x n pixels respectively and bhoth are

represented by integers. The task is to find the sub-area of
A which registers or best fits B (Apvendix A). Either a
sequential or random search strategy can be implemented.
Besides this, there are several ways to define similarity and
| their computational requirements differ considerably[10].

The elements of unnormalized cross correlation surface

1 R(i,d) are defined as

n m .
i R (i,j) = kZ:'l g"i A (k1) - B (itk, j+) (5)

- e g
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A search for the maximum on the surface is then initiated.
However, the maximum does not necessarily yield the registra-

tion point or yields a bad fix. Therefore, the correlation

must be normalized as

R;{(i.j) = 1 2=1 ' i : (6)
n m n m % )
5 3
[1}{; . A%, 4)} [:{-::1 2, Bl je) l

The resultant fix is much better than the unnormalized cor-
relation and the normalized correlation does give excellent
results as to the self correlation of both optical and radar
scenes. It is sensitive to background level and it requires
extensive computations.

As a remedy, the followinog new similarity measures are
proposed. Further details of which are descvibed in Appendix
B. These measures represent the edge pictures with binary
numbers 0's and 1's for edge points and non-edge points re-

spectively. Define a logical similarity measure as

n m ‘ ‘

2 X A1) - B (ki £+)
R (i,j) =k=11=1 (7)
L n m n m 1

)IEDY A (kL) X 2 X Bk, L4)

k=12=1 k=1 4=1
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formula is for use in the case where only edge ponints are

to be considered and can be further approximated as

AND' ") = an

m n
DIED IR
k=

R ) (8)

N

Alternatively, if all points are to be considered (edge

and non-edge points) we define the NOT-EX-OR correlation

measure as

e
it
[v]:t

m . .
X — (9)

EXOR mxn L=1 A (k,1) EX-OR B (k+i, 2 +i)

k

i

Note that Rz (i, 13), RAND(l j) and REXOR have values between

0 and 1; they are normalized quantitives. A comparison of

the different correlation computations is shown in Figure 39.

T
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3.3.2 Experimental Results

A sequence of experiments were performed using the
edge correlator method (Eg. (8)) to register:

+ Optical-to-optical images

* Radar-to-radar images

- Radar-to-ootical images

Figure 40 shows the edge pictures extracted from the
optical and radar images. The size of both images is 180 x
180. A window of size 64 x 64 located at the coordinates of
(57, 57) was selected from the optical image as shown by
solid lines in Figure 40(a). This window was correlated with
the 180 x 180 optical image at every fourth location to pro-
duce a correlation map of size 39 x 30. The result is shown
in Figure 4la. Similarly, the radar-to-radar correlation
was performed and the results are in Figure 41b. Both
figures show sharp correlation peaks located at the points
of true registrations, thus providing a high confidence level
that the correct matches have been found. These results
indicated that when two images are relatively free from geo-
metric and sensor distortions, the implementation of edge
correlator using the fast algorithm with the AND operator
as in equation (8) is especially attractive in real time
computation. It reduces computations and storage require-
ments since the fixed point multiplications have been replaced
by the simple AND operations.

To see how the edge correlator can be applied to radar-

to-optical registration, two windows of different sizes and

e,
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Window: 64 x 64

Reference: 180 x 180

Window Coor.: (57, 57)

Pixels per Shift: 4 89
Algo.: Correlation

a. Optical-to-optical correlation
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b. Radar-to-radar correlation

Figure 3,




locations were chosen from optical images. The two windows

were then correlated with the radar image.
The window sizes and locations as shown in Figures 40

and 43 can be summarized as follows

Window No. Window Size Location Reference Size
1 (64 x 64) (57, 57) (180 x 180)
2 (32 x 64) (49, 21) { 90 x 122)

Window No. 1 was correlated with the reference image at
every 4th location. Window No. 2 was correlated with the
reference image at every 2nd location Figure 42 shows the
correlation of window No. 1. For clarity a threshold was
selected so that only those points with relatively high cor-
relation wWwere shown. Similarly the correlatiéns of window
No. 2 are shown in Figure 44. In the case of window No. 1,
althouagh a relatively high pbeak was found to be located at
the true registration location, other peaks of equal or
higher amplitude were also obtained. This provided only a
relatively low confidence in locatina the true registration
point. In the case of window '2. 2, a high peak was obtained
at a location which is four pixels away from the true re-
gistration location. An examination of the optical window
and the reference radar map indicates that a slight geometric
misregistration exists between the two images. Thus, the

correct matching location was located more accurately by the

automated technique.
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Window: Optical (64 x 64)

Reference: Radar (180 x 180)

Window Coor,

(57, 57)
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Radar to optical correlation. thresholded at T

to emphasize peak structure
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Optical with window no. 2

a.
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Optical and radar edge pictures (90 x 122)

b. Radar

Figure 43.




Window: Optical (32 x 64)

Reference: Radar (90, 122)

Window Coor.: (49, 21) ’
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Figure 44, Radar to optical correlation thresholded at T =0. 280
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3.4 Conclusions

Several significant techniques on edge extraction and
registration have been developed in this section. These are:

1. A set of edge operators extracted from the derived
orthogonal basis were identified. These operators encom-
pass nearly all of the previously derived operators by other
researchers on a 3 by 3 image window. Therefore, the new
edge operators can be applied to extract edges as well as
other important image features such as points and lines.

2. A correlator with AND-operations was developed. This
correlator is far more efficient than the existing correla-
tors in terms of computational efficiencies and storage re-

quirements. Theoretical and experimental results derived

from this section indicate that edge feature can be used as
a useful tool in image registration. These results indicate

that the edge correlator is efficient and works very well on

most regions of a scene in which only a few salient edges are
present and no significant geometric or sensor distortion is
present. Whenever, geometric or sensor distortions are pre-

sent, the edge correlator performance is heavily dependent

| ar e

upon the scene content as well as the degree of distortion.
Further research is needed to predict the degree of sensiti-
vity to these distortions as well as on other edge detection

operators and techniques.
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CONVENTIONAL SIMILARITY MEASURES

FOR CORRELATION SEARCH
N

jl Window scene B (k, 1)
n /(senSed scene or ref. map)
1
M /

Search region A (k, 1)
w {ref. map or sensed scene)

- Seafch region A is M« N pixels
- Window scene B is m.n pixels

- A and B are represented by integers

Cross-Correlation

n m
R (i,j) = ZZ A(,2)-B(i+k j+41)
k=1 ©-1

Problems: R(i,j) is a function of energy content of B within

window at position (i, j). Fix is very bad (see 2-D
plot)

Normalized Cross-Correlation

2;21: A (k,2) B(i+k, j+4)
Ry 4,3) = ksl L=l

[EF (ol - 28 [swerol] |

Remarks: Fix is greatly improved (see 2-D plot)
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THE LOGICAL NORMALIZED CROSS-CORRELATION MEASURE

c A NEW SIMILARITY MEASURE FOR
CORRELATION SEARCH OF EDGE MAPS

Problem: The conventional cross-correlation or normalized cross-
correlation measures cannot be used for binary representation;
bipolar representation must be used to account for points where A=0,
B=l or A=1, B=0. Failure to do so would bring in only points where

imne

Bipolar representation of edges ﬂ“ - -m - -J- - -I,-;I- l- =

%a A=B=1,

§ \
T}

i Binary representation of edges i ]

?! edge 'points can
4

O

This is achieved at great computational savingé by the LOGICAL
NORMALIZED CROSS-CORRELATION MEASURE

n m
Z\:Z A (k, 1) ® B(k+i, L4j)
RL (irj) = = =1

n m
zi Ak, 1) - ZZ B (k+i, L+j)
k=1 4=1 k=1 4=1

s e ey

+2

- The sums are simple incremental counters.

3 - The integer multiplications of the numerator are replaced by a
1 bit EX -OR function.

}v - The integer squares of the denominator are eliminated.
) - Sequential similarity search can be implemented by randomizing

the memory addresses corresponding to the indices k, 2,
k+i, 1+j.
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SECTION 1IV. INVARIANT MEASUREMENTS

4.1 INTRODUCTION

The theory of algebraic invariants from which the various
facets of invariants developed is based upon a simple idea
which first appeared in Lagrange's papers and was subsequen-
tly developed by Gauss [1,2].

This simple idea was: given a quadratic equation

ax” + 2bx + c =0

lets us transform x to y by:

= Px*g or x = 35Y
rx+s ry-p

then transformed equation will be

Ay2 + 2By + C = 0 where

A = a52 + cr2 - 2bsr

B -ags + b(gr+sp) - cpr

il

cC = aq2 - 2bgp - cp2

then let us form the discriminant:

B - AC = (ps-qr)z(b2 - ac).
Hence the discriminant of the equation in y is equal to the
discriminant of the x equation, times the factor (ps—qr)2
which depends only upon the coefficients p, q, r, s in the
transformations y = %ﬁ;g .

Boole was the first to observe that for every equation

the discriminant remains unchanged (except for a factor) if

X is transformed to y by some transformations.




- N 7 A g~ bt G R Rl o o P S s, R lag T [

99

A uniform method which would give all the invariant
expressions was given by Cayley in 1845 by his memoir, "On
the Theory of Linear Transformations." Then Sylvester joined
him in the construction of the general theory of algebraic

) invariants.

The development of invariant algebra continued through
the first half of the present century by efforts of E. Elliot,
| Salmon, Grace and Young, et. al.
! Algebraic invariant theory contributes the derivation
‘ of algebraic expressions which will remain invariant under
certain transformations. The first use of algebraic invari-
ants and moment invariant measurements for the purpose of
picture recognition was advanced bv Hu [2). He used spatial
moments as a means of representing characters and normalized
them by developing a theorem relating momement measurements
( to algebraic invariants. Hall, et al. [3,4] has used moment
i invariants to describe both the spatial distributions of
objects and edge structures of texture patterns for chest X-

ray recognition.

! A major problem encountered in the computer representa-
tion and measurement of a scene is the fact that by changing
the viewing angle, scale, or rotation, most numerical measure-

! ments will change substantially. Therefore, it is desirable
to consider normalization of the derived measurements in

such a way that invariant properties be established.

TN e
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Any discrete two dimensional scene may be represented
by f(xl,yi); i=1,2,...,N, j=1,...,M. Certain measure-
ments from this two dimensional array may be normalized by
the utilization of algebraic invariant techniques.

The purpose of this section is to explore more deeply
the use of moment invariants for the analysis and represen-
tation of complex scenes, present an analysis of a variance

of the "invariant measurements” when made on computer images,

and present pictorial examples for scene analysis.
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4.1.2 QUANTICS AND INVARIANTS

Quantic

A function of several variables x,v,2,...which is ra-
tional, integral and homogeneous is called a quantic.

If there are only two variables, such a function is
called a binarv quantic, and for a ageneral a variable we
call it g-ary gquantic.

The order of a quantic is the degree of X,Vy,....

The quantics of 1lst, 2nd, 344, ..., pth are called

linear, quandratic, cubic,..., p-ics respectively. The binary
p-ic will be denoted by the form: aoxp + palxp-ly+...‘p—§+l)

arxp—r+lyr which is usually shown in short as:

P
(ao,al,a2,...,ap) {(x,v) .

Note: When we talk about the coefficient of a binary quantic

|p-r+l
we mean ao,al,...,ap and not ao,pao,...,( r )ar,... .
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Invariants

An invariant of a single quantic is a function of
3 the coefficients of that quantic whichs;after a linear trans-
formation, remains constant except for a multiplicative
factor which is a function only of the coefficients of the

transformation. i

{ Ex. Consider a binary quantic of order p:
Q = (aoo al, ¢ 00, ap)(x’ y)p

in which we transform x,y by

then the same quantic in the transformed domain would be

Q= (aép a-l

1’- .o ,a;)(xl, yl)p

o

where the values of a%,ai,...,aé are evaluated by the iden-

tity: !

p_,.1
(ao,al,...,apﬂx,y) =(a0,a

1 1,1 1 |
1,--.'ap)(x 'Y)p. _"

Now we say f(ao,...,ap) is invariant under the above trans-

formation if the following identity holds:

1 1 1
! f(aolal,-oo'ap) =¢(£

11"12"21"22’“30""'ap) j
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where § is a power of the determinant of the transformation:

A being the determinant of the transformation, i.e.
A = 111122_212£21 for the case of w= 0 we have absolute
invariants.

Two sets of (x,v,...) and (x',y',...) are called co-
gradient if a linear transformation on one set compells the i
other set to the same linear transformation.

Two sets (xl,xz,...,xp) and (yl,yz,...,yp) are called

contragradient if we transform the first the first set by

where

-
i
—
™
S
Q‘.
[¢]
[ d
r
LS
o

P

then the transformation for the second set has to be

' ~T
y =Ly




Theorem:

Proof:

4.1.4,

Suvpose we have a binary quantic of order p:

1" T is the transpose of the inverse of L

. A T . . X
In contragradient quantities x'y remains invariant.

x' =Lx
y' =Ly
X,Ty, _ ETLTL—T_ _ §TX

Invariants of Orthogonal Transformations

p
(apo’ap—l,l""’aOp(x’y)

consider the transformation

®

x cosf -sinp

y sihg@ cos§

<

Now we transform (x,y) and (x',vy') as follows

and
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then we would have
o0 = Lixr 4 iy
V' = %(x' ~ iy")
U = 3(x + iy)
v - Tk - iy).

Now substituting for x and y

—

1
= -Z-[x'cos 8 - y’'sing] + %—i[x’sin 81y’ cos g]
= %—x’eie+ %—iy'eie = eie u’

Hence

U’ = yei®

1, .1 : i
V= S(x-iy) = -2—[x'cos 9 - y'sing] - %[x’sine+y’cos 8]

= lx’e-le_ :l-.y’

2 2 e'19= e—lGV’.

Hence

V= glfy
Then we will have the following identities

‘ P_ P
(Ipoi LECI | IOP)(U' v) = (apot sy aop)(xp Y)

= (a’Pop o s sy a’op)(x” y')p

n

(Tgr - - o Ty U0, Vel .

.
g e T T ST P Ty 3. 4 - e S — By N e e
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Then the invariants of which there are p+l linearly indepen-

dent ones, are obtained from the following equations.

i ¢+ _ ,ip@
E: IPO ¢ Il'-’o
g p _ _i(p-2)8
E.t I =
! p-1,1 ¢ o1
i :
i .
wi ’ = "i(P‘z)e
Il.p-l € Il,p-l
¢ - -iPd
; o= € oLy -
E

From the first two identities we have

Tpo™2po-1 (f )ap-l. 1" (g)ap-z, 2

+i (g )ap_3' gt HiPag

Ip-l, 1= (ap0+ap_2’ 2) - i(p-Z)(ap_l’ 1+ap_3. 3)

teee (—i)p-z(az'p_z+a )

Op

{a .+2a

I2,27 (Bpot 23, 5, 2%2p 4,4 ~ilP-Day ) y+2a, 3 s¥a, g o)

» o090 -' p-4
| + +(-i) (a4’ p-4+ Zaz’ p-2+a0p)

- o Ceee o r,
Lper, ™ (Bp0i 35 2,27 " 5250y 2, )L 1)

H *Sese o r,
(ap-l, 1$2p.3, 3} i35 2r-1, PYRYIS PR ) R P

e

. tese * r 3 p-zr
(82, p-25i 82542, p-2r-2° *** $3gp L DTN, <P “Tp-2r> 0

T R T Mg P g PN
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and

/2 /2 i
112, pl2” 2pot (pl )ap-Z. 2t (pz )ap-4. gt tag, }

i

; P = even. ;
8 _;
‘ i
" i
3 [

12
Mam b e e e

-
—ee L

—— e e -
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s b
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4.2 Perceptual Invariants

In a discussion of shape recognition, Deutsch[3] de-

scribed four invariance properties of human perception.

1. Shapes may be recognized independent of their

location in the visual field.

It is not necessary to

fixate on the center of a figure in order to recog-

nize it nor need the eyes be moved around the con-

tours of a figure. Thus, shape recognition is in-

variant to translation provided the object remains

in the visual field.

2. Recognition can be effected independently of

the angle of inclination of a figure in the visual

\ field. The angle refers to the angular orientation

of the figure in two dimensions although some in-

variance to the depth angle is also observed.

Therefore, the recognition of a figure is invariant

to rotation in two dimensions, although the angle of

rotation may also be recognized.

2K 3. The size of a figure does not interfere with

the recognition of its shape provided the entire

figure is within the visual field. Thus, visual

recognition exhibits an invariance to scale.

4. Mirror images apnear alike. Both humans and

animals tend to confuse these. This observation

rules out a template matching theory of shave re-

cognition because a template superposition cannot

T T i
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take place for mirror images and thus the confu-

sion cannot be predicted.
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Deutsch also points out that certain primitive organisms
find it more difficult to distinguish between squares and
circles than between rectangles and squares,which casts
some doubt on recognition theories based on angular properties
of figures. He also argques that the invariance proverties
are common to all parts of the visual cortex, which rules out
a scanning orocess for shape recognition. To illustrate that
the invariance properties could be realized easily, he pro-
posed the following system.

The receptor surface is connected to a two dimensional
coding array which is excitedknra contour falling on the
corresponding receptors. For example, if a spherical object
is focused on the retina, the circular contour is projected
on the coding array. The processing of the edge contour is
described by the following four rules.

(i) Every figure excites the retina only by its

contour i.e., only the contour of the figure
will appear on the to w dimensional array.
(ii) Every array point will transmit a pulse down
the common cable as soon as an excitation
reaches it from the retina. The integration
of th-se pulses gives a measure of the total
number of edge points.

(iii) Each contour point on the array will also ex-
cite all the units which are at riqght angles
to it on the array. These excitations will

not pass to the common cable but only to the

Sl b Ao e Ee i b Wi S5 ) el - ¢




o )

neighboring cells. It is also assumed that

these lateral excitations move at the same
speed in all directions.

(iv) As such lateral excitation from a point in a

contour advances another message will be
sent down the common cable as soon as it co-
incides with another contour point.

The recognition of shape is made from the signals on
the common cable. For each pattern, two sets of pulses,
separate in time, are transmitted. The first set relates to
the number of contour points. The second provides shape in-

formation. This system can be shown to be invariant to

T R e i A R & SN AT P o SPe t

translation, rotation, scale and mirror image as previously
described. The invariance to translation, rotation and mirror
image transformations would affect neither the number of con-
tour points nor the distance between edges in the figure.

The size invariance may be obtained by normalizing the se-
cond signal by the first. That is, the lateral excitation

signal would be used to normalize the occurrence times of the

second signal.

It is interesting to note that the proposed system
would be more easily confused in differentiating circles and
squares than rectangles and squares.

Both circles and squares would produce two sharp
pulses which could be of equal magnitude if the same number

of edge points were detected. However, the rectangle would

produce three pulses and could easily be distinguished from




i oo i s I I A S Gl 0w miptinre - s

R
-

PUREETRNE SRV NOUpp U

T

112

either a square or circle.

The limitations of this simple model are many; however,
it does illustrate a logical approach to recognition. First,
the desired recognition properties are determined, then a
system which satisfies these proverties is designed. The
particular system described was devoted to shape recognition.
Other systems need to be developed which are invariant to
intensity changes and more complex images. The nower and
simplicity of DNDeutsch's aporoach was a major contribution

from psychology to the understanding of recognition systems.

Skl
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4.3.1 Moment Invariants

Any two-dimensional pattern can be represented by a
picture function, f(x,y), with respect to a pair of axes
fixed in the visual field. It is also true that by means of
a uniqueness theorem[3], two dimensional moments, mpq,

which are defined as:

= X f(x, Y)dXdy
Tpq LL y

p,q =0, 1,2,000

can be used to uniquely represent f£(x,y). Hence one may use

mpq as a means of representing any two~dimensional pattern.
The computations of mpq consist of multiplying the

functions f(x,y) by a monomial xpyq and integrating the re-

sult. The monomials of order 3 or less, xoyo, xoyl,x0y3,

xlyo,xlyl,xzyo,xzyl,x3y0, and xly2 are shown in Figure 45.

The moments of order p+g may also be interpreted as the
response of an imaging system with the transfer function of,
xpyq, and the input, f(x,y). Low order moments have intui-
tive relations to objects. For example, Moo is related to
mass m; o and Mgq to center of mass and Wypr Mooo and My0 to
principal directions.

Another useful concept is the moment generating func-
tions which is defined as:

M(u, v) = J- J‘ explux + vylf(x, y)dxdy .
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If p and v are considered as complex variables, this expres-
sion is a two sided Laplace transform. For the invariant
development both u and v are assumed to be real. This func-

tion can also be written in the form of

WP
L E Peapl P

where the exponential has been expanded in its Taylor series

equivalent, assuming that moments of all orders exist. This

equation shows that the moments may be determined from the
derivatives of the moment generating functions evaluated at
the oriagin.

Central mements are defined as

L]

wo= j (x-%)P(y-5)Vp(x, y)dxdy

PA v__ Y o
where
- ™o - _ ™Moy
X= 2=, yEigo -
00 00

Central moments may be easily shown to be invariant under
translation and from here for the sake of simplicity we will
assume to be using central moments.

To relate the moments to algebraic invariants, one may

first expand the exponential term in the moment generating

“anction to obtain
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[- -] [} o«
M(u, v) = j Y I’l'_ (ux + vy)pp(x, y)dxdy.
K a2 .cop=0°"

Now after using the binomial expansion and carrying out the

integration:

M, v) = B otpr, = (2) (071 ()

The functions of the form

) 4 p- .
B (0)C)E)

are called qualtics in the study of algebraic invariants[1]
and play a major role in the computation of moment invariants. 3
The fundamental definitions of this theory are described in

Section 4.2.1.

4.3.2 Fundamental Theorem of Moment- Invariants

If the binary p~ic has an invariant

f(a.’po,...,a6 A“’f(apo.....a )

p = op

then the moment of order p has an algebraic invariant

e

’ ’ - w
f(uPO'."'uop) - ’JIA f(upo,oo-,uop)
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where J is the Jacobian of the transformation.

The importance of this theorem lies in the fact one may

find an invariant function of moments once we have a corre-

sponding algebraic invariant function.

A point which should be emphasized is the generality in-
volved in linear transformations. The only restriction was
A # 0. Hence we can use rotation, reflection, magnitude
change, and correspondingly make our normalization with re-

spect to magnitude, rotation, orientation, etc.

Example: Similitude Moment Invariants

Consider the transformation

x’ o 0x
, = » « constant .
y 0 ojly

we can write an algebraic invariant simply as

_ _p+qg
3pq = 3pq

where « 8 is the determinant. By using the fundamental theorem

the moment invariant is:

L o

' - , Ptg+2 1
u pq =% “pq (1)
4
Since J =a2.
For zero order (p+l = 0) we have:
W' o= a2y (2)

now by eliminating a between (2) and (1) be have the following

absolute moment invariants:

s - UL ST T
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4 p+q=2.3.---
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4.3.3 Derivation of Moment Invariants

In the following we attempt to use the concept and tools
of invariant algebra which is discussed in Section 4.1 to
derive the seven invariant moments which are simultaneously
inveriant with respect to size, orientation and location of

the object in the scene. The detail theory behind these deri-

vations is given in Section 4.1. So in the rest of this

sub -sect’.on we proceed to use those tools in calculating

the invariant moments.

v a—— e A

_ 5
Hyo = D §<x-x> (y-9)°5(x, y)

m
m )
10 mg, 00

n
o

M1 = §§.(X-i)l(y-§)lf(x, y)

M10™;

=m -
1
S mg,

K}

a0 = ZZ (x-%)2(y-5)%1(x, y)

2m, 2
= m,, - 10° , ™Mio? _ m m,2
m - - ————————
00 Mso 20 mg

oz = ZZix-%)%y-5) 1%, y)
Xy

m_.2
=m 01

- ————

00

02 m
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In summation:

Moo = Mgq»
Mig=0.

Ho1 =0,

H2p = Mpo - xm,

Ho2 = Mg~ ymy,

121

u30 = DT x-31(y-5)%t(x, y)
x y
2

= rn30 - 3xm20 + Zmlox

Hy 2= 22 (x-%)(y-7) 6(x, y)
xy

N ; -2
=m, - 2ymy - xmg, + 2y'm

Hpy = ZZ x-%) 2(y-7) 1%, y)
Xy

_ - - -2
=m,, - meu- y'm20+ 2x my,

Ho3 = DT (x-R){y-7) t(x, y)
Xy

= m03 - 3ym02+ Zymm .

M11® ™ -Ymy,

- _a= -2
M3 m30 3xm20+ Zmlox

_ - - .2
12 = Mz~ 2ymy -xmg,+2y°m o

) - - -2

_ - .2
o3 = Mg3-3ymy,+2y"m,, .

The normalized central moments, denoted by n are

defined as:

Pq

o L
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p+q=2)3.0¢.

The normalized central moments are invariant to size
changes as well as translation.

From the second and third order moments a last set of
measurements can be derived which are invariant to proper
and improper orthogonal rotation, and mirror images as well

as invariant to translation, size change.

® = N20t Mo2
2. 2
®2= (N20™ Mo2) *4n,
02 = (Nan- 311324 (31441 2)°
P37 M30™"M12) TH°N217 No3
_ 2 2
®y = (N3t my) +iny ¥ ngs)

) 2 2
¥ = (N30- 3010 (n30t ny)ln301 N )7 3(n ;4 ng5)")

2 2
(30517 M3/ (M2t Mg3) N30t M ) - (7 mp5) ]

- 2 2
9= (N30 Ng2 (N30 N1 2) - (n1+ng3)°]

t4n)1(n3etn g tngs) .

A seventh "metric" can be added which will change sign

under improper rotation.

_-gitvilial i
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7= 31157 N3N N30+ nylingg*nyp) " 3ngytngy) ]

2 2
+(3n,,-Mg3) (21 g3) 3 (N30t ) - (gt ngs) T

4.3.4 Numerical Computation of Moment Invariants

In the previous section, the moments were computed for

a continuous function of continuous variables. For com-

puter implementation, the moments must be computed for a

discrete function of discrete variables. Also, the range

of the moments must be considered. 1In this section, the
computer representation and numerical computation of moment

invariants will be described.

Any finite set of moments may be computed and stored as

a matrix. For example, the matrix, M, of non-central moments

with p, g less than or equal to 3 is given by:

-
Moo o1 ™oz ™o3
7
r'd
M0 ™11 Thz ™3
M = e
ma0 21 ™2z ™a3
7
4 m
M3 ™33 M3z M33

If an order, n = p+l, is selected, and all moments with n

less than or equal to fixed value is selected, then an upper

triangle matrix is produced. This condition is illustrated

e — — e -
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by the elements above the line in the matrix, M. Similar
matrices may be defined for central and normalized moments.

An important question for the computer implementation
of moment invariants is the range of the moments since this
determines the computer storage requirements. The maximum
value of the noncentral moments is easily determined by the
following procedure. Let the objective function, J(x,y), be
given by

J(x,y) = mpq'

To maximize J subject to the constraint

JlE(x,y)dxdy =1

one may use the method of Lagrangian multipliers:
H=J+ A[[f(x,y)dxdy - 1).

Equating the partial derivatives of H with resvect to x,y and
A to zero, give the conditions

pf(x,y) + XfX(XIY) =0
af (x,y) + YfY(X.Y) = 0.

Thus, the maximum value of moq may be expressed as

- -of P lqr 4
Joax = I . £ f(x,y)dxdy.

Y

This expression may be used to determine the maximum value of
a known function, f(x,y). For example, suppose that

f(x,y) = X exp{-x-y}.




Application of the above formula gives

- P.d
Imax = °9°-

Although the previous expression gives the maximum value
of the moments, it depends on the function. It is sufficient
for computer implementation to use upper bounds for the
maximum value. For a finite rectangular region, easily

computed bounds may be based or the following relationship:

b .4 b .d
_ P g P q
mog L L x*y ‘plx, y)dxdy EfmaxL J‘cx y ‘dxdy

which gives

D+l pt
m =g [BP -aP l][dq“-cq“
PQ~ maxl  ptl q+1 ] .

A similar upper bound for the central moments is easily shown

to be

poo=f [ (b-a)P*! ﬂd-c)q”]
PQ- maxi p+l L g+l °
Lower bounds may be computed in a similar manner.

The computed bounds on the moments may be used to scale
the computer operations, select register lengths, and norma-
lize computed feature values.

Another factor to be considered in the numerical compu-

tation of moment invariants is that since the invariance

properties were proven only for continuous functions, certain
variations should be expected in the discrete case. The
following development shows that these variations do occur h

but can be controlled by careful techniques.
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Lemma 1. The moments are invariant under translation of

coordinates provided Xy = kAx, Yo = LAY.

Proof: Suppose the density with respect to coordinates x,y is

f(x,y). Let x]y' be a translation of x,y:

T Tl -

-

D

x' =x-~-x, y' =y -y

for some X Yy- Then with respect to the x', y' coordinates,

the density must be f'(x',y') = f(x'+xo, y‘+yo). With re-

ca b e, wee L

spect to the x,y coordinates, the p—qth central moment is
i - P
M (,f:p: q) = ' X =X Yy - ¥ x
oy P T (5 )5 o
(xn’xmoel‘

with respect to the x',y' coordinates, the p-qth central ’

moment 1is

F g €20 T (e i 3\ (v o

E; ' (x;'y;nbel‘

i where of course, Ax' = Ax, Ay' = Ay: %'
A Note that we can index x! such that x' = x - x !
. n n n e} §
iff X, = kax for some integer K. Similarly for y&. Hence, 'i.
L
¢
[ 1 provided that Xy = kax, Yo = LAY, then it is readily verified 1
li that
%
‘ ' =y - V' = UV -
ﬂ x X = X Yy Y - Y, (1)
i e 7' = - ! - vu' = -
1 ¥ T X Xn T X Ym = Y Ym ~ Y (2)
{
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and 3

= f ' =f »

f'\x;x’ y;n) £ (xn+x°, ym+y°) (xn Ym) 3)
and

{
[

J = .
uxl'yl (f ’p’ q.) “x'y (f:P; Q.) 1 (4) ;
i.e., provided that x, = kéx, y_ = ¢ 8y, then u  _(f,p,q) ’

is invariant undre translation of coordinates.

Note: x_ = kAax, Yo = % by is required if (1), (2), (3),
(4) are to hold exactly. If X # kAx and/or Y # 2 Ay,
then (1), (2), (3), (4) become approximation and the con-
clusion is only aoproximately valid.
Lemma 2. The moments are approximately invariant under simi-
larity transformation.

Proof: We write the moments in the form of

e TR o
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P ' q
P q x! -x Y_ -y
- - n n m "'m
= (x -x) (y -y) (H_F"-—) o

5 ) f(xn.ym Mx Ay

for small variations of x' from X and yé from Yy, We will have

x'm- xn m-ym -\P -q
! = - - -
Miq upq +§ E pxn g +qY = (xn x) y_-y) f(xn,y )ax Ay
m n

m

= Moo
So
' ju
ugg . P2 _ 4+ R
piq +1 Ejzﬁ‘-l- 1
2 .
(Mod (Moo )
where
R = 1 x'n- xn Y;:n- m - -.q
) r ZE P +a = e % Ply )
Big+l n n m
(Ugo)

f (xn. ym)A x4y

The moments are also approximately invariant under

digital rotation withe variation dependent upon the size of

rotation and the intervolation method used.
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4.3.5 Experimental Results for Scene Analysis

To demonstrate the advantages and limitations of moment
invariants for scene analysis the following experiment was
per formed. A general segment of an aerial scene was digi-
tized and imbedded into a zero array since the moment compu-
tation depends upon the selected frame size which must be
finite. This image was then reduced in size by a factor of
two by averaging four points into one; inverted in magnitude
modulo 255; mirror imaged, rotated 45° and 2° using nearest
neighbor interpolation. These images are shown in Figure 47.

The corresponding invariant measurements are shown in
Figure 46. The logarithms have been taken of the invariants
to compress the dynamic range. Note that the invariants are
close but not identical for the different transformations of
the original scene.

The main conclusion which can be deduced from these ex-
perimental results is the great conformity of the theory with
the empirical results. This suggests momznt invariants as a
practical and convenient tool in shape representation and
image registration. At the end point of the calculation one
obtains a set of measurements which are invariant to any
translation, rotation or size change which might occur inr any
picture of a scene due to various factors. The method may
be expanded beyond this extent, i.e. for order o moments,
one has p+l invariant measurements (refer to Section 4.1}).

Hence, a large supply of these invariant measurements are

available.
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EXPERIMENTAL RESULTS:

In this part we verified empirically the seven invariant

moments which have been derived from a given scene. The

measurements, shown in Fig. 46 correspond to the pictures in
the following pages resvectively.
1]
1
. FINAL INVARIANTS- FINAL INVARIANTS-
X 6.24993 6.22637
i 17.18015 16.95439
22.65516 23.53142
22.,91954 24 .22687
45.74918 48.34990
i 31.83071 32.91619
3 45,.58951 48.34356
[7 Optical Window Optical Reduced 2
FINAL INVARIANTS- FINAL INVARIANTS-
6.21612 6.91980
16.58215 19.95532
21.79714 26.68924
22.68471 26.90140
. 44.92849 53.72453
( 31.22309 37.13457
g 44.9C¢914 53.59021
Optical Inverse Optical Mirror
FINAL INVARIANTS- FINAL INVARIANTS-
6.31823 6.25346
16.80396 17.27091
19.72426 22.83652
20.43774 23.13025
40.52568 46.13627
29.31589 32.06803
40.47074 46.01707
' Optical Rotation 45° Optical Rotation
t
i Figure 46.

1485



Optical Window

’ Optical Reduced 2 Optical Mirror

- Optical Rotation 2 Optical Rotation 45

FIGURE 48.
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SECTION V. HIERARCHICAL, SEARCH TECHNIQUES

5.1 Introduction

The problem of matching two images of the same scene
taken by different sensors under different conditions is a
challenging problem in scene analysis. The two scenes called
the reference scene and sensed scene may be transformed so
drastically by different data collection geometrics or sen-
sors that it is not possible to match the scenes. However,
in most interesting cases, the scenes can be matched by a
photointerpreter. Only this class of scenes will be consi-
dered. A general approach to matching two scenes involves
locating corresponding regions in the scenes. If several
corresponding regions can be located, then geometric and in-
tensity mappings may be developed to match the scenes. There-
fore, a basic problem is: given a region of the reference
(sensed) image, determine its location in the sensed (refe-
rence) image (Fig. 48). The standard comnuter approach to
this problem is to use the gray levels or a derived image of
the reference region as a template and select the position of
maximum cross correlation between the template at each pos-
sible shift position of the sensed image as the match loca-
tion. Since a template of size M x M can be shifted into
(N—M)2 possible positions in an N x N image as shown in Fig-
ure 1, the number of correlation computations can be extre-

mely large. Fast correlation and edge correlation techniques
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decrease the correlation time at each shift position: however,
these methods still require a computation at each of the (N-
M)2 positions. The purpose of this section is to describe
hierarchical search techniques which are logarithmetically
efficient, i.e. reduce the number of search positions to K
log (N-M).

Although no previous work on hierarchical map matching
has been discovered, several previous experiments on hier-~
archical decompositions of pictures have motivated this study.
Klinger and Dyer[1] developed a regular decomposition of
picture areas into successively smaller guadrants resulting
in a logarithmetic search. Tanimoto and Pavlidis [2] also
considered a hierarchical data structure for pnicture proces-
sing in order to speed up edge detection operations.
Ramaperian [3] also used multilevel search techniques for
edge detection.

Several advantages of a structured approach are apparent.
It is not necessary to examine each pixel in a high resolution
image to locate a region at high resolution. The selecrivity
of the hierarchical techniques, especially coarse-fine search
methods, is similar to the perceptual operation of the effi-~
cient human visual system. The proposed method in which a
match region is obtained at different levels is extendable to
other problems such as edge or object location. The method
provides an arbitrary degree of precision in locating a region

which is limited only by the highest resolution size and the

uniqueness of the match region. Finally, the method permits

e e

A
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an efficient decomposition of the sensed scene into "infor-

mative" and "irrelevant" regions
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II. Coarse~-Fine Search Technique

In the hierarchical technique a structured set of
pictures at different resolutions will be used. The high
resolution sensed scene will be denoted, PL(i,j) where for
simplicity

L
i,j =90,1,2,...,2 -1

The index L is called the level of the search. The reference
region at level L, QL(i,ﬁ) will be assumed to be smaller than
the sensed scene. The agglomerative rule by which the

level K scene is reduced to a level K-1 scene is simple four

point averaging, i.e.

Po (i) =_L{PLI2,2) + PLl2i, 2j41) + Pp(2i4l, 2i)

< K
+ Prl2i41,2j41)

K-
for i,j= 0,1,2,...,2 -1

The reference image reqgion size varies with the level and is
an important consideration. Obviously, objects present at
one level may not be recognizable at a lower level. However,
allowing the reference image size to change alleviates this
problem. When looking for a forest one need not look at the
leaves. A reference match region must be selected for each
level and the performance of the algorithm depends upon the

uniqueness of these reference regions.




A matching rule must also be specified to guide the
search from level K-1 to level K. Several possible match
function such as correlation may be used. The match fun-
tion x Ay, for x and y should have certain properties,
such as

1. Identity, x~X

2. Symmetry, if x~y then y~x

3. Shift invariance, if x~y then x+a y+a where a is a

constant vector.

4. Scale invariance, if x~y then Ay where 1is a scalar.

5. Rotation invariance, if x~y then T X~y where T is

a transformation matrix.

6. Sensor invariance, if x..v then t(x)~.y where t is

the sensor transformation.
The vectors x and y may be the gray level values or derived
measurements from corresponding sensed and reference regions.
Note that normalized correlation satisfies properties 1-4
but not 5 and 6. Invariant measurements such as moment in-
variants used with normalized correlation satisfy properties
1-6. Certain derived functions such as edges or sensor cor-
rected images used with invariant measurements and norma-
lized correlation may satisfy all the properties. Also, note
that other properties such as invariance to weather or even
man made changes may be desirable.

A specific example which illustrates a coarse-fine
search will now be considered. A quadrant tree will be used

for decomposition of the sensed scene as shown in Figure 49.
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The efficiency of a quadrant subdivision algorithm for a
coarse-fine search is illustrated in Figure 50. Location of
an element in an N x N array, requires only logzN steps.

One of the prominent features in cross-correlationgraphs
is the dAifferences in the location of the peak when one ob-
tains cross-correlation of radar picture against the corre-
sponding optical picture, and the cross-correlationof the
optical picture against the corresponding radar picture. This
phenomenon can be expnlained fully by noting the existing
misregistration of the two images.

Consider two functions f(x,y) and h(x,y). The correlation

function of these two can be defined as:

0
ca,B) = fff(x y) hix+a . y+8)dx dy
0

Now suppose there is another function h(x,y), which is the
translated version of h(x,y). Then:
h'(x,y) = h(x-a,y-b)

where a, b are relative distances that has been translated.

The value for correlation in this case would be:

0
C'{a.B8) = fﬁ(x.y) h'(x.y) dx dy
C'(a,B) = f?(x-y) hix +a-a, y+B8-b) dx dy

~-Q0

Cla-a. 8-b)
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Hence one concludes that the new correlation function is just

the translated version of the original correlation. The

radial dislocation is then

d = /a2 + b2
Now if f'(x,y) is the translated version of f(x,y), i.e.

f'(x,y) = £f(x-a', y-b"'")

then
- <)
CcC" (a.B) =fff(x-a.‘, y-b') h(x+a-a) (yt8-b) dx dy
-— 0
Now
x =a' = x' ’ vy - b=y
then
X =x' +a' p y=y' + b
, 20
ct(a.B) =fff(x‘.y') hix'+a'-a+a, y'+b'-b+g) dx' dy'
- OO '
or

C"(a.B) = C (0+a'-a, B+b'-b)

Hence the relationship of this new correiation when both
f(x,y) and h(x,y) are translated is just the translated

version of the original correlation.

Conclusion:
In the situation of the correlation graphs that was

referred before we have ‘

a' = -a, and b' = -b :




C' (a. B) = C (at-2a, B-2b)

then the radial distance of C with respect to C" is

Q,
Il

24

S




5.2 EXPERIMENTAL RESULTS

A sequence of experiments were performed to investigate
the zoom technique for actual images. The simple 4 for 1
averaging was used for the agglomerative step. An inves-
tigation was made of the size reduction allowable for matching
of the large and small stadium regions for both the optical
and radar images. Correlation was used as the measure of
similarity and a resolution which permitted a significant
correlation peak was taken as adequate. Another experiment
using a derived edge picture and moment invariants was also
performed. Finally, an example is presented of selecting
moment measurement from the optical regions for location of
the match position in the radar image at various resolutions.

The first sequence of experiments were performed to
verify the basic concept of the zoom technique. The geome-
trically corrected optical image scanned at 256 x 256 reso-
lution was reduced to 128 x 128, 64 x 64 .and 32 x 32. A
similar sequence was produced for the intensity corrected

radar image. The following experiments were done:

Step 1:

A 64 x 64 optical picture was divided into four equal

major regions. Then the invariant moments of the picture

were used as a means of representing the pvicture. The top
right window with (1,1) coordinates was then used as a
referenced region and the correlation function of this
sensed region with the whole picture was obtained. The

reference region was moved nixel by pixel across the whole
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4 sensed picture and thus the shown correlation function was

obtained. The window size was 32 x 32.

Step 2:

The selected region in step one was enlarged to 64 x 64,
then this picture again was divided into four equal regions.
The reigon with the coordinate (33, 33) was selected and,
using a similar procedure as in step one, the correlation

funciton was obtained.

Step 3:

A similar procedure as in step 2 was performed, with
the exception of the selection of the region, which in this
case was with the coordinate {(1,1). The obtained correla-
tion function is shown.

In all the pictures shown, the photograph corresponds

;‘ to the next largest square, which contains the shaded region.
For example, in the Figure 51, the photograph corresponds to
the square which is labeled c¢' in the large square.

The resulting correlations for the optical image are

shown in Figures 51, 52 and 53. The corresponding experi-

ment for the radar images are shown in Figures 54, 55 and 56.
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SECTION VI. SCENE CONTENT MEASUREMENTS AND RECOMMENDA-
TIONS FOR FUTURE WORK

The general problem of map matching of images of the same

scene taken under different conditions with different sen-

T

sors was considered in detail during this study. Several

INE S
-

innovative approaches and concepts were investigated and de-

a monstrated by experimental computations on images from optical

R et ST

and radar sensors. Among these were:

e mdme s

'y * Techniques of geometric and sensor intensity correc-

E

:

& tions
i ' Hierarchical search for image registration
i

* Extraction of invariant features and invariant feature

correlations
}' * Edge extraction and edge correlations
' Since most correlation techniques work well on locating
a region from an image, one approach to map matching of two
different images is to develop inverse transformations to make
the images appear as a region from one image. This general
transformation depends upon both sensor and imaging characte-
y ristics and is difficult if not impossible to determine.. How-
ever, it was possible to develop simple approximations which
rectify not only the geometric but also the intensity of
‘ two arbitrary images. A "map warping" approach which involves
a two dimensional polynomial mapping from corresvonding

;

]

|

i

El points in the two images was used for geometric corrections.
F A new technique based upon the Karhunen-Loeve transformation

was used to determine a principal component of the image with
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a corrected intensity distribution. This approach is an
example of a class of intensity matching transformations
which because of their effectiveness and simplicity may be-
come imoortant techniques for map matching. These techni-
ques only require that intensity statistics bhe assumed or
experimentally determined. Other information that could be
obtained about the scene, such as object composition or
height, would permit the develop of more sophisticated methods.
Hierarchical search techniques for image registration
were introduced in this report and promise to be a highly
efficient and effective method for map matching. An impres-
sive feature of these methods is logarithmic computational
efficiency. A special case of the hierarchical techniques
permits a "zoom" to be used to locate an object of interest.

That is, an image can be searched at low resolutions and a

region is located approximately. Then the approximation can

be refined to any desired level by investigating selected

regions in higher resolution images. The hierarchical tech-
F nique was demonstrated for locating regions from an optical
image in an optical image, régions in a radar image in a
radar and regions of a radar image in an optical image. The
matching of radar and optical image requires the extraction
of measurements which are invariant to sensor and geometric
distortions. This requirement led to the study of invariant

measurements.

—7 T T i Y




Certain measurements have a high degree of invariance

to the types of geometric and sensor transformations produced
in optical and side looking radar imaging. Moment measure-
ments of the image intensity can be transformed into a set of
invariants which are invariant to translation, rotation, scale
and other transformations. These invariants were computed

and used as measurements in correlation experiments. It was
noted that due to the digital nature of the computation the
measurements were only approximately invariant but did work
quite well for map matching optical and radar images.

Edge structure also remains invariant to many sensor
transformations and thus edge correlation for map matching
was also considered in detail. A new decomposition method
for 3 by 3 windows was developed and used for edge detection.
Although edge structure is very invariant to sensor trans-
formations, the edge correlator may he sensitive to geometric
transformations depending uvon the edge detection technique.
Experimental optical-radar correlations were performed to
demonstrate the efficiency of the edge correlation approach.

A common problem encountered in all correlation methods
is a sensitivity of performance to the content of the scene.
This phenomena was demonstrated in several examples and
requires further investigation.

Each of these techniques and developments have been
successfully applied to alimited set of images. The use of ]

a limited number of images was necessary at this time in order

to provide a well-defined environment for the development
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of the basic techniques.

To demonstrate the true usefulness of these approaches,

1.

they must be applied to many scenes of interest. Therefore,
~

it is recommended that the following work be performed:

Establish the performance of these approaches to
sequential map matching using hierarchical search,
edge features, and structured invariant moments with
respect to terrain and type.

Identify the types of scenes and features which are
best suited for these approaches.

Perform theoretical and experimental statistical
analysis on these approaches and determine suita-
bility of these approaches to the perturbed scenes.

Verify the validity of experimental performances

through statistical analysis.
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